DSM2 PTM, an Open Source Platform for Delta Fish Migration Behavior Research and Model Development

Xiaochun Wang (DWR),
Russell Perry (USGS), Jason Romine (USGS),
Adam Pope (USGS)

Goal

Develop a fish migration model to:

- Identify environmental factors that affect fish behaviors and survival
- Evaluate ecological impacts
- Assist management decision-making
- Guide field monitoring programs

Current PTM Features

- Tracking particle positions in 3D space
- Time step determined by user and flow Conditions
- Built-in random walk components

Current PTM Output

- Individual particle travel time from A to B
- Particle flux: # of particles passing specified location
- Particle concentration: # of particles in specified area

Neutral Buoyant Particle = Fish?

- Move passively with flow, no active swimming velocity
- Make route choice based on flow split
- Always stay alive

Add Swimming Behavior

Fish movement velocity = flow velocity + constant swimming velocity (v)

Estimate Constant Swimming Velocity

- Obtain observed fish travel time data from acoustic telemetry fish studies
- Run PTM simulations to generate simulated travel times
- Maximize likelihood function to estimate the velocity

Obtain Observed Fish Travel Times Studies

Acoustic telemetry fish studies:

- Collected by USFWS
- Late-fall Chinook from Coleman NFH
- Tagged and released in DEC JAN 2007-2010
- Total sample size: 1147

Obtain Observed Fish Travel Times

Detection Stations

Obtain Observed Fish Travel Times

Detection Stations

Run PTM Simulations

Observed t₁ ... t_T

Maximize Likelihood Function

Fish hold and move slower than flow!

Fish Holding Behavior

Fish movement velocity = flow velocity + constant swimming velocity (-0.28)

Future Work: Statistical Analysis

- Swimming behaviors
 - Explore other parameters that affect travel time distribution, such as tidal/diurnal holding behavior
 - Incorporate more telemetry data sets
 - Estimate swimming velocities for other river reaches

Future Work: Statistical Analysis

- Route and survival behaviors
 - Analyze multi-station/multi-year acoustic telemetry tag data
 - Develop routing models for route choice probabilities
 - Develop survival models for survival probabilities

Future Work: PTM

- Implement behavioral models
- Modify PTM to take 3D velocities from a 3D flow model
- Build an open-source platform to facilitate collaborative model development

Acknowledgement

USGS:

- Russell Perry
- Jason Romine
- Adam Pope

DWR:

- Jacob McQuirk
- Bob Pedlar
- Ryan Reeves

